MARK SCHEME for the October/November 2011 question paper

for the guidance of teachers

0606 ADDITIONAL MATHEMATICS

0606/11

Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – October/November 2011	0606	11

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Accuracy mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2, 1, 0 means that the candidate can earn anything from 0 to 2.

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – October/November 2011	0606	11

The following abbreviations may be used in a mark scheme or used on the scripts:

- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{}$ " marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy.
- OW –1,2 This is deducted from A or B marks when essential working is omitted.
- PA –1 This is deducted from A or B marks in the case of premature approximation.
- S –1 Occasionally used for persistent slackness usually discussed at a meeting.
- EX –1 Applied to A or B marks when extra solutions are offered to a particular equation. Again, this is usually discussed at the meeting.

	Page 4					Paper		
		IGCSE – October/November 2011				11		
1	(a) (i) 7 a	and 0	B2		B1 for each.			
	(ii) 22	and 15	B2	[4]	B1 for each.			
	(b) 3 'sets'	enclosed in a rectangle	B1 B1		B1 for set P and set Q separate B1 for set R contained within set P			
2	f(-2):-2a+b=84				M1 for substitution of a	correct value of x		
	$f\left(\frac{1}{2}\right)$:	$\frac{1}{2}a+b=\frac{3}{2}$	A1		A1 for each correct equa unsimplified)	ation (allow		
	a = -3.5	<i>B</i> , <i>b</i> = 18	M1, A1		M1 for solution to obtain	n a and b		
	f(1) =	-19	$\sqrt{B1}$	[6]	$\sqrt{B1}$ on their <i>a</i> and <i>b</i>			
3	(i) Gradier lg <i>c</i> = -		B1 M1 M1		M1 for a valid attempt to M1 for attempt to deal w	•		
	<i>c</i> = 0.2	51	A1	[4]				
	(ii) $N = 0.2$	251 <i>t</i> ⁴	√B1	[1]	$\sqrt{B1}$ on their <i>m</i> and <i>c</i>			
4	(i) 6! = 72	0	B1	Г1]				
	(ii) 2 × 5!	= 240	B1	[1] [1]				
	(iii) 4 × 5!	= 480	B1	[1]				
	Odd fir	rst and last: 4! (24) st and even last: 4 x 4! (144) ' × 4! = 168	B1 B1 B1	LIJ				
				[3]				

Page 5	5 Mark Scheme: Teachers' version		Paper
	IGCSE – October/November 2011	0606	11

5	(i) $v = 2\cos 2t$	M1	M1 for attempt to differentiate
	when $t = 0$, $v = 2$	A1 [2]	
	(ii) $\cos 2t = 0$, $2t = \frac{\pi}{2}$	M1	M1 for attempt to solve and deal with $2t$
	$t = \frac{\pi}{4} (0.785)$	A1 [2]	
	(iii) when $t = \frac{\pi}{4}, x = 4$	B1	
	when $t = 0, x = 3$ distance moved = 1	√B1 [2]	$\sqrt{B1}$ for 'their 4' –3
	$(iv) a = -4\sin 2t$	M1	
	when $t = \frac{3\pi}{4}, a = 4$	A1 [2]	
6	(a) $-5 = p + 3 \tan\left(-\frac{\pi}{4}\right)$	M1 A1	M1 for use of $\left(-\frac{\pi}{12}, -5\right)$
	$\therefore p = -2$ $1 = p'+3 \tan 3q$ $\tan 3q = 1$	M1	M1 for use of their p and $(q, 1)$
	$q = \frac{\pi}{12}$	A1 [4]	
	(b) amplitude $a = 4$ b = 5	B1 B1	
	When $f = 11$, $x = 0$, so $c = 7$ Or when $f = 3$, $x = \frac{\pi}{3}$, so $c = 7$	M1 A1 [4]	M1 for use of either max and $x = 0$, or min and $x = \frac{\pi}{3}$

	Pa	ge 6	Mark Scheme: Teachers IGCSE – October/Novem		Syllabus Paper 0606 11
7	(i)	$\frac{n(n-1)}{2\times 25} =$	$=\frac{3}{5}$	B1	B1 for correct term
		$n^2 - n - 3$	$0 = 0$ or $\binom{n}{2} = 15$	M1 M1	M1 equating 3^{rd} term to $\frac{3}{5}$ M1 attempt to solve quadratic or realising
				111	that $\binom{n}{2} = 15$ when $n = 6$
		<i>n</i> = 6		A1 [4]	
	(ii)		$\frac{3}{5}x^2\left(4-\frac{12}{x}+\frac{9}{x^2}\right)$	B1	P1 for 4
		term: 4 $12n$			B1 for 4
		$-\frac{12n}{5}$ (14.4)	M1	M1 for 2 nd term
		$0.18(n^2 -$	(5.4)	M1	M1 for 3 rd term
		= - 5		A1 [4]	
8	(a)	$\int_{0}^{2} e^{2x} + 2e^{2x}$	$e^x + 1 dx$	M1	M1 for expansion
		$\left[\frac{e^{2x}}{2} + 2e\right]$	$\left[x^{x}+x\right]_{0}^{2}$	B1 B1 B1	B1 for each correct term
		= 41.6		M1, A1 [6]	M1 for correct use of limits
	(b)	$y = \frac{1}{2} (4x)$	$(x+1)^{\frac{1}{2}}(+c)$	M1	M1 for attempt to integrate
				A1	A1 for $(4x+1)^{\frac{1}{2}}$
				A1	A1 for $\frac{1}{2}(4x+1)^{\frac{1}{2}}$
		when $y = $	4.5, $x = 2, c = 3$	M1	M1 for attempt to find c , must be from integration
		$y = \frac{1}{2} (4x)$	$(+1)^{\frac{1}{2}} + 3$	A1 [5]	A1 for $c = 3$

	Page 7	Mark Scheme: Teachers	' version	Syllabus	Paper
		IGCSE – October/Novem		0606	11
9	(i) cosec ² .	$x = 8 \sin x$	M1	M1 for use of correct ide equivalent	entity or
	$\sin^3 x =$	$=\frac{1}{8}$	M1	M1 for dealing with cose	ec or equivalent
	$\sin x =$	$\frac{1}{2}$	M1	M1 for attempt to solve	
	$x = 30^{\circ}$	°,150°	A1, A1 [5]	Withhold last A1 if extra	a solutions
	(ii) tan(2 <i>y</i>	$(v-0.3) = -\frac{5}{4}$	M1, A1	M1 for attempt to get in	terms of tan
	2y - 0.3	3 = 2.2455, 5.387	M1	M1 for dealing with orde	er correctly
	<i>y</i> = 1.2'	7, 2.84 (allow 1.28 and 2.85)	A1, A1 [5]		

	Pa	ge 8	Mark So	cheme: Teachers	' versi	on	Syllabus	Paper
			IGCSE -	 October/Noven 	nber 20)11	0606	11
10		HER $\frac{1}{2}(2r)^2(3$	$3\theta) - 2\frac{1}{2}r^2\theta = 5$		M1 M1		M1 for use of sector area M1 for attempt to equate	
		$\theta = \frac{1}{r^2}$			A1			
		P = 2r(3e)	$(\theta) + 2r + 2r + 2r\theta$		M1		M1 for use of arc length	
		leading to	$P = \frac{8}{r} + 4r$		M1		M1 for attempt to get P	in terms of r and θ
		(answer g	iven)		A1	[6]		
	(ii)	$\frac{\mathrm{d}P}{\mathrm{d}r} = -\frac{8}{r^2}$	$\frac{1}{2} + 4$		M1		M1 for attempt to different to zero.	entiate and equate
		when $\frac{\mathrm{d}P}{\mathrm{d}r}$	$r=0, r=\sqrt{2}$		A1			
		$P = 8\sqrt{2}$			M1 A1	[4]	M1 for attempt to obtain	P
	(iii)	$\frac{\mathrm{d}^2 P}{\mathrm{d}r^2} = \frac{16}{r^3}$, + ve ∴ minimu	n	B1		B1 for correct method an	nd conclusion
		when $r =$	$\sqrt{2}, \theta = \frac{1}{2}$		B1	[2]		

	Pa	ge 9	Mark Scheme: Teachers	' versi	on		Syllabus	Paper
			IGCSE – October/Novem	nber 20)11		0606	11
10	OR (i)		- <i>r</i>	B1	[1]			
	(ii)	$\sin\theta = \frac{r}{O}$	$\frac{1}{C}$, $\sin\theta = \frac{r}{10-r}$	M1		M1 f	or attempt to use si	nθ
		leading to	$r = \frac{10\sin\theta}{1+\sin\theta}$	A1	[2]	A1 fo answ	or correct attempt to er	o simplify to given
	(iii)	$\frac{\mathrm{d}r}{\mathrm{d}\theta} = \frac{10}{(1+1)^2}$	$\frac{\partial\cos\theta}{\sin\theta}^2$	M1		M1 f quoti	or correct attempt t ent	o differentiate a
		when $r =$	$\frac{10}{3}, \sin\theta = \frac{1}{2}, \cos\theta = \frac{\sqrt{3}}{2}$	A2, 1, M1 M1	0	M1 f	each error for attempt to find s for substitution	in or cos
		$\therefore \frac{\mathrm{d}r}{\mathrm{d}\theta} = \frac{2}{2}$	$\frac{0\sqrt{3}}{9}$ (3.85)	A1	[6]			
	(iv)	$\frac{\mathrm{d}r}{\mathrm{d}t} = 2 ,$		B1				
		when $\theta =$	$\frac{\pi}{6}, \frac{\mathrm{d}\theta}{\mathrm{d}r} = \frac{3\sqrt{3}}{20}$					
		$\frac{\mathrm{d}\theta}{\mathrm{d}t} = \frac{\mathrm{d}r}{\mathrm{d}t}$	$\times \frac{\mathrm{d}\theta}{\mathrm{d}r}$	M1		M1 f	or correct use of ra	tes of change
		leading to	$\frac{\mathrm{d}\theta}{\mathrm{d}t} = \frac{3\sqrt{3}}{10} \ (0.520)$	A1	[3]			